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ABSTRACT

Extreme ultraviolet imaging spectroscopic observations often show an increase in line width around
the loop-top or above-loop-top (ALT) region of solar flares, suggestive of turbulence. In addition, recent
spectroscopic observations found the oscillation in the Doppler velocity around the ALT region. We
performed three-dimensional magnetohydrodynamic (MHD) simulations to investigate the dynamics
in the ALT region, with a particular focus on the generation of turbulence and the excitation of
the oscillatory motion. We found a rapid growth of MHD instabilities around the upper parts of
the ALT region (arms of the magnetic tuning fork). The instabilities grow more rapidly than the
magnetic Rayleigh-Taylor-type instabilities at the density interface beneath the reconnecting current
sheet. Eventually, the ALT region is filled with turbulent flows. The arms of the magnetic tuning fork
have bad-curvature and transonic flows. Therefore, we consider that the rapidly growing instabilities
are combinations of pressure-driven and centrifugally driven Rayleigh-Taylor-type instabilities. Despite
the presence of turbulent flows, the ALT region shows a coherent oscillation driven by the backflow
of the reconnection jet. We examine the numerical results by re-analyzing the solar flare presented in
Reeves et al. (2020). We find that the highest non-thermal velocity is always at the uppermost visible
edge of the ALT region, where oscillations are present. This result is consistent with our models. We
also argue that the turbulent magnetic field has a significant impact on the confinement of non-thermal
electrons in the ALT region.

Keywords: Solar flares — Magnetohydrodynamics — Magnetohydrodynamical simulations

1. INTRODUCTION

Magnetic reconnection is the central mechanism that
powers solar flares by suddenly releasing magnetic en-
ergy (see reviews by, e.g., Shibata & Magara 2011;
Fletcher et al. 2011; Hudson 2011). Solar flares are suit-
able targets to study the energy conversion process of
magnetic reconnection in astrophysical systems. Solar
flares form X-ray bright flare loops with a temperature
of & 107 K. The soft X-ray structures of the flare loops
are often accompanied by localized hard X-ray sources
(e.g. Holman et al. 2011). The hard X-ray sources that
appear just above the soft X-ray flare loops are called
loop-top or above-the-loop-top (ALT) sources (e.g. Ma-
suda et al. 1994; Petrosian et al. 2002; Liu et al. 2013).
The meaning of ”above” is not strict because of the lim-
itations of spatial resolution and the line-of-sight e↵ect,
and we hereafter use the term of ALT. Recent radio ob-
servations suggested a concentration of nonthermal elec-
trons around the ALT region (Chen et al. 2020). Such

observations have motivated theoretical studies to un-
derstand the connection between the magnetohydrody-
namic (MHD)-scale and the kinetic-scale processes.
Although the electron acceleration occurs essentially

at kinetic scales, MHD-scale dynamics should also be
considered to understand the origin of the ALT sources
in hard X-rays. Super-magnetosonic reconnection out-
flows will produce termination shocks in the ALT re-
gions. Theoretical studies suggest an e�cient produc-
tion of nonthermal electrons at the termination shock
(e.g. Tsuneta & Naito 1998; Nishizuka & Shibata 2013;
Kong et al. 2019, 2020). Electrons could also be ef-
ficiently accelerated in the contracting magnetic loops
via magnetic mirror, which may produce an ALT source
(Somov & Kosugi 1997). If MHD turbulence develops,
the stochastic electron acceleration will take place as a
result of the energy cascade down to the kinetic scale
(Petrosian et al. 2006; Petrosian 2012). In any cases,
the MHD-scale structures such as shocks, turbulence,
and magnetic mirrors determine which processes oper-
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ate e↵ectively. Therefore, it is important to reveal the
detailed MHD structure around the ALT regions.
Takasao & Shibata (2016) investigated the dynamic

behavior of the ALT region using 2D MHD simulations
(see also Takasao et al. 2015). It is found that the re-
connection outflow impinging on the reconnected loops
forms multiple termination shocks and excites local os-
cillation in the ALT region, even when the reconnec-
tion outflow is laminar and quasi-steady. As the mag-
netic structure in the oscillating ALT region is similar
to a tuning fork, they termed it “magnetic tuning fork.”
Later, more sophisticated 2D simulations of plasmoid-
mediated reconnection have been performed to find that
the ALT oscillation can also occur in such cases but in an
asymmetric manner (Takahashi et al. 2017; Shen et al.
2018), suggesting the robustness of the magnetic tuning
fork mechanism (for the case in partially ionized plas-
mas, see Murtas et al. 2022). Spectroscopic observations
of a solar flare with IRIS and EIS/Hinode provided sup-
porting evidence; Reeves et al. (2020) identified oscillat-
ing plasma motions in the loop-top region of an X-class
flare using Doppler shift measurements.
Apart from the oscillation, observations show indica-

tions of turbulent plasma motions around the ALT re-
gions. Turbulent structures are discerned in extreme
ultra-violet images (e.g. McKenzie 2013; Shen et al.
2022; Freed & McKenzie 2018), and spectroscopic ob-
servations also indicate local enhancement of nonther-
mal line widths (e.g. Hara et al. 2008; Doschek et al.
2014; Warren et al. 2018; Reeves et al. 2020). From co-
ordinated observations, Kontar et al. (2017) argued that
the kinetic energy of turbulent motions around the loop
top seems to be significant in terms of the nonthermal
electron energy. This suggests the importance of tur-
bulence for electron acceleration, although the relation
with the kinetic-scale process remains unclear (c.f. Pet-
rosian et al. 2006).
The spatial distribution of turbulence can change the

scenario of electron acceleration in the ALT regions.
If the turbulence develops just around the termination
shocks, di↵usive shock acceleration will work because
of a cross-field di↵usion of electrons (Kong et al. 2019,
2020). However, the turbulent regions may be separated
from the shocks. Shen et al. (2022) performed 3D simu-
lations of a solar flare and examined the development of
turbulent flows around the ALT regions (see also Guo
et al. 2014; Innes et al. 2014). They found the devel-
opment of turbulence beneath the reconnection current
sheet as a result of instabilities, but the turbulent region
is distant from the termination shocks. Such turbulent
flows will have a small impact on electron acceleration
and confinement.

We examine the excitation and the spatial distribution
of turbulent flows in the ALT region using 3D MHD
simulations. Our models indicate the development of
turbulent flows beneath the current sheet, as shown in
previous studies. In addition, we found that turbulent
flows develop more rapidly in the arms of the magnetic
tuning fork. This study indicates that the ALT region
should be full of turbulent flows with multiple shocks.
Section 2 describes the numerical method. The turbu-
lent ALT structure is analyzed in Section 3. We sum-
marize the results and give some theoretical discussions
on the growth of the instability in Section 4.

2. NUMERICAL SETUP

2.1. Basic Equations

We show 2D and 3D simulations of a solar flare to
highlight the importance of three-dimensionality. The
MHD equations in the following form are solved:
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where ⇢, p, and v represent the density, the pressure,
and the velocity of the gas, respectively. E,B are the
electric and magnetic fields, respectively. J is the cur-
rent density. ⌘ is the electric resistivity. � = 5/3 is the
specific heat ratio. R,µ, and T are the gas constant, av-
erage molecular weight, and the temperature of the gas,
respectively. I is the unit tensor. Radiative cooling,
heat conduction, and gravity are ignored for simplicity.
However, we present a 3D simulation including the heat
conduction but with a lower spatial resolution in Ap-
pendix A and argue that the main findings of this study
are less a↵ected by heat conduction.
We used Athena++ (Stone et al. 2020) to numerically

solve the basic equations. We adopted the Harten-Lax-
van Leer Discontinuities (HLLD) approximate Riemann
solver (Miyoshi & Kusano 2005) and the constrained
transport method (Stone & Gardiner 2009) to integrate
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the equations. The piece-wise parabolic method (PPM)
is used for spatial reconstruction, and the third-order
Runge-Kutta time integration is performed. The nor-
malization units of our simulations are summarized in
Table 1.

Table 1. Normalization Units

Quantity Unit Value

Length L0 3, 000 [km]

Density ⇢0 1.6⇥ 10�15 [g cm�3]

Temperature T0 2.0⇥ 106 [K]

Velocity ciso,0 =
q

RT0
µ 170 [km s�1]

Time t0 = L0/ciso,0 17.6 [s]

Pressure p0 = ⇢0c
2
iso,0 0.47 [erg cm�3]

Magnetic field B0 =
p
4⇡⇢0ciso,0 2.4 [G]

2.2. Initial and Boundary Conditions

The atmospheric structure and magnetic field geom-
etry at the initial condition are shown in Figure 1.
Our 3D models are based on Takasao et al. (2015)
and Takasao & Shibata (2016), but the domain size
and dimension are di↵erent. The calculation domain
covers �7.5L0  x  7.5L0, 0  y  20L0, and
�0.75L0  z  0.75L0, where the x and z directions
are parallel to the solar surface, and the y direction is
perpendicular to it. In our 3D model, this domain is re-
solved by a 900⇥ 1200⇥ 90 grid. Our 2D model has the
same domain size and spatial resolution in the xy plane
of the 3D models. Adaptive mesh refinement is not used
in this pilot study. Refining and de-refining mesh can
lead to the generation of artificial MHD waves, which
can make it di�cult to study the excitation of the ALT
oscillation. The initial density distribution is given as

⇢(x, y, z) = ⇢chr + (⇢cor � ⇢chr)

⇥1

2


tanh

✓
y � hTR

wTR

◆
+ 1

�
, (8)

where ⇢chr = 105⇢0, ⇢cor = ⇢0, hTR = 1.0L0, wTR =
0.2L0. The initial pressure is uniform in space, and
p(x, y, z) = p0. The initial magnetic field is assumed
to be a force-free field and is described as

Bx(x, y, z) = 0, (9)

By(x, y, z) = B tanh(x/w), (10)

Bz(x, y, z) = B/ cosh(x/w), (11)

where B = 3.92B0, w = 0.5L0. The initial plasma � is
spatially uniform and is set to be 0.13.
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Figure 1. Schematic diagram of the initial and boundary
conditions of the 3D MHD simulation.

To induce magnetic reconnection, we adopted a spa-
tially localized resistivity in the form of

⌘(x, y, z) = ⌘0 exp

2

4�
 p

x2 + (y � h⌘)2

w⌘

!2
3

5 , (12)

where w⌘ = 1.0L0, h⌘ = 20L0, ⌘0 = 0.01L2
0/t0. With

this model, a Petschek-type magnetic reconnection with
a single X-point (Petschek 1964) is established. There-
fore, the time-variability found in our simulations is not
induced by plasmoids but by other mechanisms.

3. RESULTS

3.1. Overview of the 3D model and

Brief Comparison with Previous 2D Models

After the simulation begins, the flare loops start to de-
velop around t = 280 s. The flare loops show a bouncing
motion and then form a compact ALT region. The ALT
region is filled with turbulence after t ⇡ 500 s. Fig-
ure 2 presents an overview of our 3D simulation after
the development of turbulence. Panel (a) shows the xy
slice of the density distribution and magnetic field lines
(yellow lines) after the development of the flare loop sys-
tem. The collimated reconnection outflow impinges on
the reconnected field lines, forming a complex ALT re-
gion. Panel (b) highlights the magnetic field structure
around the ALT region. Disordered fields are promi-
nent there, suggesting the development of turbulence.
Panel (c) displays the density structure in the yz plane
at x = 0.43L0, slightly shifted from the center. It is
shown that the density in the ALT region is fluctuating.
As we will see later, the distribution of the turbulent
flows is highly inhomogeneous even though the ALT re-
gion is much smaller than the system size.
Figure 3 shows the termination shock structure at

t = 528 s. Panel (a) displays the pressure distribution
at z = 0. In panel (b), the color denotes the divergence
of the velocity field normalized by the local sound speed,
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(b) (c)

(c)(a) (b) (c)

Figure 2. The 3D snapshots of a simulation at t = 660 s. Panel (a) shows the mass density and magnetic field lines of the
flare loop system. Panel (b) indicates the structure of field lines and the field strength around the ALT region. The color of the
lines denotes the field strength. Panel (c) displays the density on the cross-section at x = 0.43L0 and magnetic field lines.

(r · v)�x/cs, at z = 0, where cs is the adiabatic sound
speed, and �x ⇠ 50 km is the mesh size. Shocks are
highly compressed regions and are highlighted as blue
linear structures. Arrows in panels (a) and (b) indi-
cate the locations of multiple termination shocks. Panel
(c) shows the normalized divergence of the velocity field
but at the plane x = 0. We can find that the recon-
nection outflow penetrates the ALT region to form mul-
tiple shocks. The formation of multiple shocks is also
found in previous 2D simulations (Takasao et al. 2015;
Takasao & Shibata 2016; Zhang et al. 2022). Our re-
sult demonstrates that multiple shocks also form even
in three-dimension. Panel (d) of Figure 3 represents the
three-dimensional shock structure. The multiple shocks
are indicated by the blue regions. Although the shock
structure in the xy slice is similar to that of previous
2D models, the shock surfaces are not straight in the z
direction at all. This shock structure is a result of the
complicated flow pattern excited in the above-the-loop-
top region.

3.2. ALT oscillation

Previous 2D models found that the backflow of the re-
connection outflow can excite the ALT oscillation, even
when the reconnection outflow is a quasi-steady laminar
flow (Takasao & Shibata 2016; Takahashi et al. 2017).
If we allow asymmetric motions about x = 0, ALT oscil-
lation tends to occur in an asymmetric manner because

of an imbalance in the restoring force between the two
arms of the magnetic tuning fork (Takahashi et al. 2017).
Recent spectroscopic observations of the ALT oscillation
by Reeves et al. (2020) also suggest an asymmetric os-
cillation; if we observe the symmetric horizontal veloc-
ity field from the side, we will not detect a significant
Doppler shift.
We examine the ALT oscillation in the following man-

ner. We track the top of the ALT region and denote the
height as ytop(t). We define

Dvy ⌘
����
dvy
dy

����
�y

cs
(13)

Dp ⌘
����
dp

dy

����
�y

p
, (14)

where �y is the cell size in the y direction. Dvy and Dp
measure the jumps in the reconnection jet velocity and
the gas pressure, respectively. Considering that MHD
fast-mode shocks are formed at the top of the ALT re-
gion, ytop(t) is defined as the maximum height at which
Dvy · Dp > D2

c , where Dc is a nondimensional number.
The magnitude of Dc represents a rough threshold for
the sizes of the jumps in vy and p across a cell of the fast-
mode shocks. After some trials, we find that the value
of Dc = 0.1 works well for tracking. We define the ALT
region as the region where the reconnection jet pene-
trates into the post-flare loops. With this definition, the
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ሺdሻሺcሻ
Shock surfaces

ሺaሻ ሺbሻ

Figure 3. The shock structure around the ALT region. Panel (a) shows the pressure distribution. In panel (b), the color
shows r · v normalized by the sound speed cs and the mesh size �x in the xy plane (z = 0). Solid lines indicate the projected
magnetic field structure. Arrows in Panels (a) and (b) indicate the locations of multiple termination shocks. Panel (c) is the
same as (b), but in the yz plane (x = 0). Panel (d) displays the 3D image of the shock surfaces. The blue regions indicate the
regions where (r · v)�x/cs  �0.25. The background color shows the mass density at z = 0. The yellow lines denote magnetic
field lines. The arrows show the direction of the velocity field in the ALT region (the size does not indicate the speed). Time is
t = 528 s for all panels.

typical vertical size of the ALT region is approximately
1L0�1.5L0. Considering this, we set the bottom height
of the ALT region to be ybtm(t) = ytop(t) � 1.5L0. The
left panel of Figure 4 indicates the locations of ytop(t)
and ybtm(t) as the solid and dashed lines, respectively.
The panel displays the vx distribution, where we can dis-
cern how the penetrating jet is refracted. We provide an
animation demonstrating that we can successfully track
the ALT region with this method.
Next, we calculate the emission-measure-weighted

horizontal velocity (vx) in the ALT region, which will
be a good indicator of the Doppler velocity in spectro-
scopic observations. We first average the velocity in the

x and z directions:

hvxiz(t, x, y) ⌘ 1

Lz

Z Lz/2

�Lz/2
vx(t, x, y, z)dz,

(15)

h⇢iz(t, x, y) ⌘ 1

Lz

Z Lz/2

�Lz/2
⇢(t, x, y, z)dz,

(16)

hvxixz(t, y) ⌘

R xALT,R

xALT,L
h⇢iz(t, x, y)2hvxiz(t, x, y)dx
R xALT,R

xALT,L
h⇢iz(t, x, y)2dx

,

(17)

where, Lz = 1.5L0 (the simulation domain size in the
z direction), xALT,L = �2.0L0, and xALT,R = 2.0L0,
respectively. To obtain the averaged value for the ALT
region, hvxixz(t, y) is averaged in the range of ybtm(t) 
y  ytop(t):

hvxiALT(t) =
1

ytop(t) � ybtm(t)

Z ytop

ybtm

hvxixz(t, y)dy.

(18)
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Panel (b) of Figure 4 displays the result (solid line).
Approximately two cycles of oscillation are found. The
period is ⇠ 100 s. The dashed line is for the 2D model.
The 3D model shows a similar but longer oscillation
period than that of the 2D model. Considering that
the ALT oscillation is driven by the horizontal back-
flow, the slightly smaller velocity amplitude in the 3D
model probably results in a longer period. Turbulence
in the 3D model seems to reduce the coherent veloc-
ity. However, our 3D model demonstrates that the ALT
oscillation indeed occurs in three-dimension.
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Figure 4. Panel (a) shows the spatial distribution of vx
around the ALT region at t = 642.4 s. The horizontal solid
and dashed lines indicate ytop and ybtm, respectively. Black
curves denote projected magnetic field lines. Panel (b) shows
the time evolution of the emission-measure-weighted horizon-
tal velocity, hvxiALT(t). The definition is given in the main
text. The solid and dashed lines display the results for 3D
and 2D models, respectively. An animation of the top panel
of this figure is available. The animation shows the evolu-
tion of not only vx but also ⇢ and � from 0 to 831.6 s. The
real-time duration of the animation is 8 s.

3.3. Local generation of turbulence in the ALT region

Figure 5 demonstrates the local generation of turbu-
lence in the ALT region. Panel (a) shows the density
distribution with the projected field lines in the xy plane
(z = 0). The inset shows the enlarged image of the ALT
region. Panels (b-1) to (b-4) show the time evolution
of the plasma � around the ALT region. As time pro-
ceeds, fine-scale structures develop around the two arms
of the magnetic tuning fork (see Panels (b-2) and (b-
3)). Eventually, the ALT region is filled with turbulent
flows (Panel (b-4)). The reconnection outflow itself is a
laminar flow and contains no plasmoids. Therefore, the
turbulence should be locally excited in the ALT region.
The ALT region seems to be unstable to both

pressure-driven (or bad-curvature-driven) instabilities
and a centrifugally driven Rayleigh-Taylor-type (RT) in-
stability. Both are related to the particular magnetic ge-
ometry of the ALT region. In the following, we describe
where these mechanisms operate.
The ALT region contains a high-pressure plasma, as

the kinetic energy of the reconnection outflow is con-
verted into heat (see Panel (a) of Figure 3). The high-
pressure plasma is confined by a curved magnetic field
(see the regions indicated by white arrows in Figure 6),
and such a plasma configuration can be unstable to
pressure-driven (or bad-curvature-driven) instabilities.
Bad curvature is defined by the relation between the
magnetic field curvature vector and the pressure gra-
dient vector. The magnetic field curvature vector  is
defined as

 = (b · r)b, (19)

where b = B/|B|. Plasma has bad curvature when

 · rp > 0 (20)

and can become unstable (e.g. Freidberg 2014). Both
interchange and undular modes can grow, and if we can
ignore magnetic shear, modes with a larger k? will grow
more rapidly in both cases. The instabilities are essen-
tially driven by the gas pressure gradient force. An im-
portant example of the interchange or flute modes is
the pressure-driven version of the RT instability. The
growth rate of pressure-driven modes, �grow,p, is written
approximately as

�grow,p ⇠ cs,ALTp
LpRc

, (21)

where L�1
p ⌘ |rp|/p is the pressure-gradient length

scale and Rc denotes the curvature of the magnetic
field. cs,ALT denotes the sound speed in the ALT re-
gion. Therefore, the growth rate is larger when the
high-pressure gas is confined by a more highly curved
magnetic field with a larger pressure gradient.
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Figure 5. Development of turbulent flows around the ALT region. Panel (a): the density with the projected field lines in the
xy plane (z = 0). Panels (b-1) to (b-4): the plasma � distributions around the ALT region at di↵erent times. The box size is
indicated by the black square in Panel (a). The center of the box is shifted with time to cover the ALT region.

The above instability mechanisms ignore the e↵ect of
the plasma flows in the unperturbed state. However,
we find transonic plasma flows along a curved magnetic
field, which can induce a centrifugally driven RT insta-
bility. Figure 6 shows the velocity component parallel
to a magnetic field, v · B/B. The figure indicates that
backflowing plasma is flowing with a transonic speed
along a curved magnetic field (see the regions indicated
by red arrows in panel (a)). Because of curvature, the
plasma feels centrifugal force. Therefore, if there is a
density contrast in the flows, we expect a centrifugally
driven Rayleigh Taylor instability. The growth rate of
this instability, �grow,c, is estimated to be

�grow,c ⇠
r

ge↵
Rc

⇡ vpara
Rc

, (22)

where ge↵ = v2para/Rc is the e↵ective acceleration due to
centrifugal force. We expect the growth of interchange
modes with high wavenumber in z direction.
In summary, the ALT region seems to be unstable

to two types of instabilities (pressure-driven instabili-
ties and the centrifugally driven RT instability), and the
growth rate of the most rapidly growing mode will be

�grow ⇠ max (�grow,p, �c) = max (
cs,ALTp
LpRc

,
vpara
Rc

) (23)

If we can assume vpara ⇡ cs,ALT and Lp ⇡ Rc in the
parameter space of interest, then

�grow ⇠ cs,ALT/Rc. (24)

As the backflow is driven by the gas pressure in the
ALT region, vpara ⇡ cs,ALT will be a reasonable assump-
tion. Lp can be significantly smaller than Rc because of
the sharp boundary inside and outside the ALT region.
Therefore, the actual growth rate can be larger than the
estimate of Equation (24).
Figure 6 demonstrates the growth of the instabilities.

Panel (a) shows the xy cutout of the pressure distribu-
tion. Regions with bad-curvature are indicated by white
arrows; the bottom end of the reconnection outflow and
two arms of the magnetic tuning fork. Panels (b-1) to
(b-4) indicate the time evolution of the pressure in the
cutout plane indicated by the white line in Panel (a).
The fluctuations indeed grow in the bad-curvature re-
gions.
For a quantitative analysis, we performed the Fourier

analysis of the density fluctuation in the z direc-
tion. Figure 7 shows the spatial distribution of the
Fourier power corresponding to a wave number of k =
1.12 [cell size�1]. It is di�cult to identify the types of
modes. Nevertheless, it is clear that the grid-scale modes
have large powers in the arms of the magnetic tuning
fork. The fastest growing mode has a wavelength of
⇠ 6�z. The fact that the fastest growing mode occurs
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Figure 6. Panel (a) shows the pressure distribution around the ALT region, where four bad-curvature regions are indicated
by white arrows. Black lines represent the magnetic field lines projected onto this plane. Panel (b) displays the magnitude of
the velocity along a magnetic field line, vk = |v ·B|/|B|. Panel (c) indicates vk normalized by the sound speed cs. Panel (d)
displays the pressure distributions at four di↵erent times in the yz plane indicated by the white line in Panel (a), where the
development of instabilities around bad-curvature regions is shown. The heights are indicated by black arrows.

at such a grid scale and in the arms is consistent with
the pictures of the instabilities we consider. The power
at the bottom of the ALT region is much weaker, which
demonstrates a slower growth of the instabilities there.
The development of instabilities around the bottom

end of the reconnection outflow is also analyzed in pre-
vious studies (Guo et al. 2014; Shen et al. 2018, 2022).
However, the detailed structures of the magnetic tun-
ing fork have been overlooked. The e↵ect of the cen-
trifugal force due to plasma flows was also ignored in
previous studies. This study found that the instabili-
ties in the arms of the magnetic tuning fork grow more
rapidly than those around the bottom edge of the out-
flow. The turbulent flows develop first in the arms of the
magnetic tuning fork, as shown in Figure 5. The tur-
bulent regions extend in size and eventually surround
the termination shocks. Therefore, the instabilities in

the arms of the magnetic tuning fork have a more sig-
nificant impact on the plasma structure just around the
termination shocks.

3.4. Spatial Distribution of Turbulent Flows

We quantify the strength of turbulence by measuring
the amplitudes of the fluctuations in the velocity and
magnetic fields. The velocity fluctuation �v and the
magnetic field fluctuation �B are respectively defined
as

�v(t, x, y, z)2 = (vx(t, x, y, z) � hvxi(t, x, y))2

+(vy(t, x, y, z) � hvyi(t, x, y))2

+(vz(t, x, y, z) � hvzi(t, x, y))2 (25)

and

�B2 = (Bx � hBxi)2 + (By � hByi)2

+(Bz � hBzi)2, (26)
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Figure 7. The spatial distribution of the Fourier power of
the density fluctuation. The power corresponding to a wave
number of k = 1.12 [cell size�1] is shown. The data is taken
at t = 484 s.

where hai denotes the average value in the z direction
for a physical quantity a:

hai(t, x, y) = 1

Lz

Z Lz/2

�Lz/2
a(t, x, y, z)dz. (27)

The spatial distributions of the turbulent kinetic and
magnetic energy densities are shown in Figure 8, respec-
tively. The figure indicates that the turbulent energy
densities take larger values in the arms of the magnetic
tuning fork.
Figure 8 displays the spatial distributions of the ki-

netic (top) and magnetic (bottom) energy densities. The
left and right panels exhibit the coherent and turbulent
components, respectively. It is shown that the relative
magnitude of the turbulent components to the coherent
components is highly inhomogeneous both in the kinetic
and magnetic energy densities. The turbulent compo-
nents of the kinetic and magnetic energy densities are
much larger than the coherent components in the two
arms of the magnetic tuning fork, which results from
the local generation of turbulence via the interchange
instabilities. The part of the reconnection outflow inside
the ALT region shows a complicated structure (Figure
3), but the turbulent components are much smaller than
the coherent components.
We found that the ALT oscillation promotes the lo-

cal generation of turbulence in the arms of the magnetic
tuning fork. The ALT oscillation is essentially a com-
pressible process driven by the backflow of the reconnec-
tion outflow (Takasao & Shibata 2016). The backflow
compresses the gas and magnetic field around the arms,
increasing the pressure gradient. As a result, the growth
rate of the interchange mode increases (Equation (21)).

Figure 8 shows the snapshots when the asymmetric ALT
oscillation induces strong turbulence in the right arm.
Our simulation demonstrates that the amplitude and
the spatial distribution of turbulence vary with time be-
cause of the asymmetric ALT oscillation.
We study the energy conversion from the magnetic en-

ergy released by reconnection into the turbulent kinetic
and magnetic energies. We define the quantity asso-
ciated with the magnetic energy released by magnetic
reconnection, dEmag(t), as

dEmag(t) =
dEmag,all

dt

h⌘

vA,0

1

Lz
, (28)

where Emag,all(t) is the total magnetic energy in the nu-
merical domain and vA,0 ⇡ 670 km s�1 is the Alfvén
speed of the initial corona. h⌘/vA,0(⇡ 90 s) denotes
the Alfvén transit timescale in the y direction (a typi-
cal timescale for the reconnection outflow). Therefore,
dEmag(t) ⇤ Lz expresses the magnetic energy released
by reconnection during the Alfvén transit timescale.
dEmag(t) defines the total energy per unit length avail-
able for driving turbulence. The turbulent kinetic and
magnetic energies per unit length in the ALT region are
respectively defined as

Ekin,turb(t) =

ZZ

ALT

1

2
h⇢ih�v2i(t, x, y)dxdy, (29)

and

Emag,turb(t) =

ZZ

ALT

1

8⇡
h�B2i(t, x, y)dxdy. (30)

Where, the domain of integration is the region satisfying
ybtm(t)  y  ytop(t) and hpi(t, x, y) � p0. We also
define the thermal energy Ethr per unit length in the
ALT region as

Ethr(t) =

ZZ

ALT

1

� � 1
hpi(t, x, y)dxdy. (31)

The thermal energy gives the upper limit of the energy of
turbulence produced by the pressure-driven instabilities.
Figure 9 shows the evolution of the energies defined

above. Comparing |dEmag| and Ethr, one will find that
approximately a few 10% of the magnetic energy re-
leased by reconnection is converted into the heat in the
ALT region. We note that the thermal energy will be
smaller if heat conduction cooling is activated. Ekin,turb

and Emag,turb are comparable to each other and much
smaller than |dEmag|. They are approximately a few
percent of |dEmag|. This conversion e�ciency is com-
parable to the observational estimation in Kontar et al.
(2017), where they estimate it to be ⇠ (0.5 � 1)% (al-
though their estimation of the released magnetic energy
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Figure 8. The kinetic and magnetic energy density distributions at t = 704 s. Panels (a) and (b) show the kinetic energy
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Figure 9. Time evolution of the di↵erent energies associ-
ated with turbulence in the ALT region. |dEmag| denotes
the magnetic energy released by magnetic reconnection dur-
ing the Alfvén transit timescale. Ekin,turb and Emag,turb are
the turbulent kinetic and magnetic energies in the ALT re-
gion, respectively. Ethr is the thermal energy in the ALT
region. Note that the unit of these quantities is the energy
per unit length in the z direction. See the main text for more
details about the definitions.

is an order-of-magnitude estimation based on the limited
observational information).
We investigate the time evolution of the turbulent ve-

locity in the ALT region. As an indicator of the turbu-
lent velocity, we examine

p
h�v2zi. Figure 10 (a) displays

the Mach number of the turbulence, which is defined as
the ratio of

p
h�v2zi to the averaged local sound speed,

hcsi. The Mach number approximately ranges 0.1-0.3
in the ALT region, except for the part of the reconnec-
tion outflow within the ALT region. To study the time
evolution of the turbulent velocity, we took the spatial
average of the turbulent velocity within the ALT region
(in the region where ybtm(t)  y  ytop(t) and hpi � p0).
The result is shown in Panel (b), where one can find a
reduction in the turbulent velocity from ⇠ 48 km s�1 to
⇠ 32 km s�1.
Considering that the turbulence is produced by the in-

jection of the reconnection jet into the ALT region, we
examine the relation between the reconnection and the
turbulence. Panel (c) of Figure 10 displays the nondi-
mensional reconnection rate averaged in the z direction,
h⌘Jz/(B0vA)i at (x, y) = (0, 20L0), where Jz is the z
component of the electric current density vector. The re-
connection rate monotonically decreases after t ⇡ 570 s.
The panel (d) displays the speed of the reconnection
outflow averaged in the z direction. It is measured at
(x, y) = (0, ytop(t) + 1L0). The panel (d) shows that
the jet speed decreases as the reconnection rate does.
The smaller jet speed leads to a smaller pressure and
backflow speed in the ALT region. Considering that the
turbulence is driven by both pressure and centrifugal
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Figure 10. Panel (a) shows the spatial distribution of the acoustic Mach number of h�v2zi at t = 528 s. Panels (b-d) show
the time evolution of

p
h�v2zi, the non-dimensional reconnection rate h⌘Jz/(B0vA)i at (x, y) = (0, 20L0), and the speed of the

reconnection outflow h|vy|i at (x, y) = (0, ytop + L0), respectively. These three panels share the horizontal axis.

force, the decrease in the reconnection jet speed results
in the reduction in the turbulent velocity. The termina-
tion shock structure may have some e↵ect on the reduc-
tion of the turbulence speed. Takasao & Shibata (2016)
pointed out that the backflow speed is smaller after the
shock is nearly a horizontal shock. The uppermost ter-
mination shock in our simulation is nearly a horizontal
shock after t ⇡ 690 s.
The Alfvén Mach number of the fluctuation is also

studied. Figure 11 displays
p
�v2/hvAi. The value ex-

ceeds unity in the ALT region, indicating the develop-
ment of super Alfvénic turbulence. In addition, fluc-
tuations propagate from the ALT region to the foot-
points of the flare loops in the form of large-amplitude
MHD waves. Kigure et al. (2010) investigated the en-
ergy transport by MHD waves produced around the re-
connection region. This study demonstrates that the re-
leased magnetic energy is carried away by MHD waves
not only from the reconnection region but also from the
turbulent ALT region. The impact of the energy trans-
port will be investigated in the future.

3.5. Possible impact of turbulence

on the magnetic mirror trap

Turbulence can a↵ect the electron confinement by
changing the e�ciency of magnetic mirror, as the turbu-
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Figure 11. The distribution of the Alfvén Mach number of
the turbulent velocity at t = 528 s. The black lines denote
projected magnetic field lines.

lent flows modulate the field strength along a magnetic
field line. Considering this, we evaluate the minimum
pitch angles of electrons that are reflected via magnetic
mirror for each field line, and we compare the 2D and 3D
models. Here, we ignore the pitch-angle scattering. The
outline of the analysis method is as follows. We pick
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Figure 12. Panel (a) shows the spatial distribution of vy(color map), magnetic field lines (black lines), and an example of
tracked magnetic field lines (the red line) at t = 616 s. The arrows along the red line denote the direction of the magnetic field.
The dashed line indicates the line y = ybtm. Panel (b) displays the histogram of the minimum pitch angle ✓mir for magnetic
mirror reflection at t = 616 s. The blue and orange bars show the results of the 2D and 3D models, respectively.

up a field line that passes through the ALT region in
a snapshot data. We write the minimum field strength
along the field line as Bmin. The electron with the pitch
angle larger than the following value will be reflected via
magnetic mirror at the location with the field strength
of Bmir:

✓mir = arcsin

 r
Bmin

Bmir

!
. (32)

As we are interested in the confinement in the ALT
region, we take Bmir as the field strength just outside
the ALT region (the detailed explanation will be given
later). We calculate ✓mir for many di↵erent field lines,
and we produce the histogram against ✓mir to examine
the statistical property. We expect that the histogram
for the 3D model will have a wider distribution because
the turbulent flows change Bmin in a complex way.
We require that the field lines analyzed should pass

through a segment of the reconnection outflow that pen-
etrates the ALT region, as we expect that non-thermal
electrons are accelerated just around or injected by the
reconnection outflow. An example of such a field line is
shown in the left panel of Figure 12. We calculate ✓mir

for 4,000 field lines that meet the requirement. Bmir is
the average of the magnetic field strength measured at
the two intersections of the tracked magnetic field lines
and the plane at y = ybtm. For example, Bmir for the

red field line in Panel (a) of Figure 12 is obtained by av-
eraging the field strengths at (x, y) = (1.22L0, 12.4L0)
and (�1.25L0, 12.4L0).
The histograms against ✓mir for the 2D and 3D mod-

els are compared in the right panel of Figure 12. As
expected, the 3D model shows a wider distribution than
the 2D model. The lower edge of the distribution ex-
tends to a smaller ✓mir because the turbulent flows pro-
duce the regions with very weak magnetic fields. This
result suggests that the turbulent flows can contribute
to electron confinement.

4. SUMMARY AND DISCUSSION

We performed MHD simulations of a solar flare and in-
vestigated the ALT oscillation and the excitation of tur-
bulence in the ALT region. We found that the ALT os-
cillation can occur in three-dimension in an asymmetric
manner even when the reconnection outflow is a quasi-
steady laminar flow (Figure 4) and the ALT region is
filled with turbulent flows (Figure 5). The ALT oscilla-
tion is caused by the asymmetrically vibrating magnetic
tuning fork (Takasao & Shibata 2016; Takahashi et al.
2017). The ALT oscillation is found to change the level
of turbulence in the arms (Figure 8), which indicates a
tight relation among the backflow of the reconnection
outflow, the ALT oscillation, and turbulence.
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Figure 13. Schematic diagram of instabilities in the ALT regions.

Our 3D simulation showed rapid growth of MHD in-
stabilities in the ALT region, particularly in the up-
per part of the ALT region. Instabilities developing in
the arms of the magnetic tuning fork produce turbulent
flows which surround the multiple termination shocks.
Figure 13 summarizes how and where instabilities de-
velop in the ALT region. The reconnection outflow pen-
etrates the ALT region to produce four bad-curvature
regions where pressure-driven instabilities can occur; the
bottom end of the reconnection outflow and the two
arms of the magnetic tuning fork (Figure 6). In addition,
the transonic backflow moves along the curved magnetic
field, which can drive centrifugally driven Rayleigh-
Taylor instabilities. Our simulation demonstrated the
development of instabilities in these regions (Figures 5,
6 and 8), which suggests that the rapidly growing insta-
bilities are combinations of pressure-driven and centrifu-
gally driven modes. Regarding the bottom end of the
reconnection outflow, Nakamura (2013) also pointed out
the formation of finger-like structures via the curvature-
driven instability, by performing a 3D simulation of a
solar flare. Other related studies will be discussed in
Section 4.2.

4.1. Comparison with observations

of the 2017 10 September flare

To put the modeling in context, we re-examine the
IRIS data presented by Reeves et al. (2020) of the ALT
region in the 2017 10 September flare. The location of
the region of interest is shown in Figure 14.
During this event, IRIS was observing the region to

the south of the main flare loops with an eight step raster
(see Reeves et al. (2020) for details of the IRIS obser-

vations). We calculate Gaussian fits to the Fe xxi line
along the slit in the sixth raster position, and show the
resulting intensity, Doppler velocity and non-thermal
velocity along the slit as a function of time in Figure
15. The Doppler velocity map clearly shows oscillations
along the top edge of the structure, indicating that os-
cillations are present as the ALT region rises, as was
found in the model. The analysis in Reeves et al. (2020)
measured oscillations in the Doppler shifts with periods
of ⇠400 s, but in that analysis, the location of the data
analyzed was stationary and not rising with the ALT
source. The rising oscillations found in this re-analysis of
the data nevertheless still have similar periods to those
found in Reeves et al. (2020). We estimate the acoustic
Mach number in this region by dividing the velocities
indicated by the Doppler shifts by the sound speed, as-
suming a temperature of 10 MK. We find numbers in the
range of 0.01-0.07, about an order of magnitude smaller
than those found in the model and shown in Figure 10.
The di↵erences may be due to di↵erences in plasma pa-
rameters in the model and the observations.
Figure 15 also clearly shows that the highest non-

thermal velocity is always at the uppermost visible edge
of the ALT region as seen by IRIS. This result indicates
that there is possibly a large amount of turbulence ac-
companying the oscillations.

4.2. Comparison with previous numerical studies

The development of the RT and Richtmyer-Meshkov
instabilities around the ALT region have been discussed
in previous studies to study the origins of supra-arcade
downflows and turbulent flows (e.g. Guo et al. 2014;
Shen et al. 2022). These instabilities only occur in flare
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Figure 14. SDO/AIA 131 Å image (left) and IRIS 1330 Å slit jaw image (right) showing the location of the slit used in Figure
15.

Figure 15. Intensity (left) Doppler velocity (middle) and non-thermal velocity (right) calculated from Gaussian fits of the IRIS
Fe xxi line along the slit shown in Figure 14 as a function of time. Note that the color table for the Doppler velocity is not
centered at 0 km s�1, but at 15 km s�1 in order to visually enhance the oscillations.
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simulations when the third direction is included. In
the previous simulations, the instabilities develop at the
density interface beneath the reconnecting current sheet
(in other words, the bottom end of the reconnection jet).
Our 3D simulation shows the development of instabil-

ities at the density interface at the bottom end of the
reconnection jet (Figure 6), as in previous simulations.
However, we found that the arms of the magnetic tun-
ing fork develop instabilities more rapidly. The grow-
ing modes produced at the density interface start to rise
well below the termination shock region. Therefore, they
have little impact on the termination region in the early
phase of the flare. However, as the arms are much closer
to the termination shock region, the turbulent flows pro-
duced in the arms quickly surround it (Figure 5). There-
fore, the turbulence produced in the arms has a stronger
impact. Figure 12 shows a field line connecting the post-
shock region and pre-shock region (see the red line). The
field line is produced by the turbulence in the arms. We
expect that electrons can be accelerated to high ener-
gies via multiple energizations (similar to the di↵usive
shock acceleration) because such a field line helps elec-
trons to cross termination shocks multiple times. This
idea is similar to a picture of the multiple energizations
of electrons based on 2D MHD plus kinetic models (e.g.
Kong et al. 2019; Li et al. 2022).
The ALT oscillation in this study is produced by the

asymmetrically vibrating magnetic tuning fork. Recur-
rent ejections of plasmoids (e.g. Kliem et al. 2000), co-
alescence of plasmoids (e.g. Tajima et al. 1987; Jeĺınek
et al. 2017) or quasi-periodic reconnection (e.g. Craig
& McClymont 1991; Nakariakov et al. 2006; McLaugh-
lin et al. 2009; Thurgood et al. 2017) are not required to
produce the ALT oscillation in our models, although our
study does not exclude the possibility that these mecha-
nisms are responsible for some quasi-periodic pulsation
(QPP) events (for reviews of QPP, see, e.g. McLaughlin
et al. 2018; Zimovets et al. 2021). Indeed, Takasao et al.
(2012) found recurrent plasmoid ejections in an erup-
tive solar flare (see also Takasao et al. 2016). The ALT
dynamics caused by plasmoid-mediated reconnection in
three-dimension is to be investigated.

4.3. Growth timescale of the instabilities

We discuss the growth timescale of the instabilities
that develop in the arms of the magnetic tuning fork
(tgrow ⇡ ��1

grow) and compare it to the Alfvén timescale
of the flare arcade system tA,in = Ly/vA,in, where vA,in

is the Alfvén speed in the reconnection inflow region.
Using Equation (24), the growth rate �grow may be ap-
proximated as

�grow ⇠ cs,ALT

Rc
, (33)

The ratio of the two timescales is estimated as

tgrow
tA,in

⇠ 0.01

✓
Rc/Ly

0.01

◆✓
vA,in/cs,ALT

1

◆
, (34)

where we assume that the width of arms (⇠ Rc) is ap-
proximately 1% of the system size Ly. As the reconnec-
tion outflow speed will be similar to vA,in, vA,in/cs,ALT

essentially denotes the acoustic Mach number of the re-
connection outflow. The sound speed in the ALT region
will be similar to the Alfvén speed if the heat conduc-
tion cooling is ignored. As the growth timescale of tur-
bulence is much shorter than the Alfvén timescale of the
system, the development of turbulence should be instan-
taneous in terms of the flare duration. In other words,
the ALT region will quickly become turbulent without
the injection of the turbulent reconnection outflow.
The above discussion ignores the e↵ect of heat con-

duction cooling. We discuss the scaling of the timescale
ratio in the case with heat conduction. Seaton & Forbes
(2009) and Takasao & Shibata (2016) show that the
acoustic Mach number of the reconnection outflow is
larger in the case with heat conduction than that in the
adiabatic case, as a result of the conduction cooling. The
dependence of the acoustic Mach number is

vA,in

cs,ALT
/ ��2/7L�1/7

y . (35)

We note that the conduction cooling also a↵ects the de-
pendence of Rc. The conduction cooling makes the ALT
size w smaller (Takasao & Shibata 2016). If we assume
that Rc ⇠ w, the dependence is

Rc / �4/7L9/7
y . (36)

As a result, from Equations (34), (35), and (36), we
obtain the following scaling for the case with heat con-
duction:

tgrow
tA,in

/ �2/7L1/7
y . (37)

This result indicates that turbulence via the curvature-
driven instabilities will develop more quickly in a flare
with a lower plasma � (a stronger magnetic field). This
plasma � dependence mainly comes from the strong �
dependence of the ALT size (Equation (36)). Equation
(37) tells that the flare size Ly has little influence on the
growth timescale.
Both the interchange and undular modes can be sta-

bilized if there is a magnetic shear in the ALT region.
However, our model assumes a negligible magnetic shear
in the reconnection inflow region. As a result, magnetic
shear in the arms of the magnetic tuning fork regions is
too small to stabilize the growing modes.



16 Shibata et al.

The magnetic shear will also be unimportant for the
growth of instabilities in an actual solar flare. Let us
consider the situation in which magnetic shear is devel-
oped on the scale of an active region. In such a case,
the magnetic shear in the ALT region will be important
if the region contains a significant fraction of the mag-
netic flux in the active region. However, as we will show
below, the ALT region contains a very small magnetic
flux. After the onset of a flare, the reconnected field
piles up to form a small ALT region. The total flux of
the reconnected field in the ALT region �ALT is esti-
mated to be BoutwLz, where Bout is the field strength
in the reconnection outflow, and Lz is the typical length
scale of the flare along the neutral line. We also define
the nondimensional reconnection rate as ⇠. Considering
the magnetic flux conservation during reconnection, we
get Bout ⇡ ⇠Bin, where Bin is the field strength in the
reconnection inflow region or around the reconnection

current sheet. �ALT is then estimated as follows:

�ALT ⇡ 1018 Mx

✓
⇠

10�2

◆✓
w/Ly

10�2

◆

⇥
✓

Bin

100 G

◆✓
Ly

1010 cm

◆✓
Lz

1010 cm

◆
, (38)

where we assume that the size of ALT region is 1% of
the flare size. The magnetic flux of active regions is
typically in the range of 1021-1023 Mx, which is much
larger than the estimated value of �ALT. Therefore,
magnetic shear in the ALT region should be negligible.
A large magnetic shear may occasionally develop when a
significant magnetic shear is stored in the reconnecting
field on a very small spatial scale or when plasmoids with
a strong guide field are injected into the ALT region.
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APPENDIX

THE EFFECTS OF HEAT CONDUCTION

In the main text, we focus on the models without the e↵ect of heat conduction because of the limitation of the
computational resources. However, we performed a 3D, lower-resolution simulation with this e↵ect and briefly examined
robustness of our results. A second-order, piece-wise linear method (PLM) is used for spatial reconstruction. The
simulation includes the following heat conduction flux in the energy equation:

Fc = �0T
5/2rkT, (1)

where 0 = 8.2 kB
mion

L0ciso,0⇢0

T 5/2
0

= 9.75 ⇥ 10�7 in cgs units, and rk denotes the gradient parallel to the magnetic field.

The calculation domain is �7.5L0  x  7.5L0, 0  y  20L0, and �0.5L0  z  0.5L0 (the length in the z direction
is shorter than that of the simulation in the main article). This domain is resolved by a 450 ⇥ 600 ⇥ 30 grid. The
resolution for one direction is two times lower than that of the simulation in the main article. To update the energy
equation, the MHD and heat conduction parts are solved in an operator split manner. For the heat conduction part,
we used the second-order Super TimeStepping method (Meyer et al. 2012).
The overall flare loop structure is largely a↵ected by heat conduction, but it has little e↵ect on the ALT dynamics.

The growth of the flare loop is shown in Figure 16. The chromospheric evaporation flows supply hot and dense plasma
to the flare loop. As the evaporation flows move upward at a transonic or supersonic speed, strong compression occurs
at their heads. Considering the property of the evaporation flows, we can identify the head of an evaporation flow by
looking at ⇢, vy, and the normalized r · v. The head is indicated by the white arrows in the figure. Note that the
counter-moving evaporation flows have collided with each other to form a high-density region around at t = 391.6 s
(see also Takasao et al. 2015). Although the evaporation flows climb up the flare loops, the evaporation flows do not
reach the ALT region. Namely, dytop/dt > vevap, where vevap is the speed of the evaporation flows. Therefore, the
evaporation flows have little influence on the ALT region. We note that the relative magnitude between dytop/dt and
vevap will depend on the reconnection process. The two speeds could be estimated from the rise speed of the hard
X-ray source and the rise speed of the soft X-ray loops (e.g. Shimizu et al. 2008).
The ALT oscillation is also found in this model. Figure 17 is the same as Figure 4 but for the model with the e↵ect

of heat conduction. The oscillation period is approximately 100 to 130 s, and the maximum velocity amplitude is
approximately 20 km s�1, which are similar to those of the case without heat conduction. However, the damping of
the velocity amplitude seems to be more prominent in this case. The damping may be promoted by heat conduction
cooling, but the low spatial resolution may also be a reason. We need to study the resolution dependence for better
understanding of the ALT oscillation.
Figure 18 displays the development of the instabilities in the ALT region. As discussed in Section 3.3, we find the

development of the instabilities in the regions with bad-curvature. Figure 19 indicates the strong Fourier power in the
arms of the magnetic tuning fork, which demonstrates that instabilities grow particularly in the arms even with the
e↵ect of heat conduction.
We note that the instabilities grow more rapidly in the case with heat conduction than in the model without it. To

find the reasons, we compare the ALT regions of the two models at the same time (Figure 20). With heat conduction,
the ALT size is smaller and the density is larger because of the conduction cooling (see also Takasao & Shibata 2016).
The smaller ALT size results in the smaller curvature radius. The larger density contrast leads to a larger Atwood
number for the Rayleigh-Taylor instabilities. We consider that these two e↵ects increase the growth rate.
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Figure 16. The 2D snapshots of a simulation with heat conduction. The panels in the top, middle, and bottom rows show
the density ⇢, the vertical velocity vy, and the normalized divergence of the velocity field, respectively. The solid lines in the
density map indicate the projected magnetic field structure. The white arrows indicate the top of chromospheric evaporation.
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Figure 17. Time evolution of the emission-measure-weighted horizontal velocity, hvxiALT(t). The solid line denotes the result
of the 3D model with heat conduction, and the dashed line indicates the result of the 3D model without heat conduction (i.e.,
the model introduced in the main text). The definition of hvxiALT(t) is the same as Figure 4.

�1.0 �0.5 0.0 0.5
x [3, 000 km]

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

y
[3

,0
0
0

k
m

]

p [0.47 erg cm�3](a)

t=352.0 s

�0.5 0.0
z [3, 000 km]

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

y
[3

,0
0
0

k
m

]

p [0.47 erg cm�3](b)

(b-1)

t=338.8 s

�0.5 0.0

(b-2)

t=343.2 s

�0.5 0.0

(b-3)

t=347.6 s

�0.5 0.0

(b-4)

t=352.0 s

100

101

2 � 100

3 � 100

4 � 100

6 � 100

Figure 18. Panel (a) shows the pressure distribution around the ALT region, where bad-curvature regions are indicated by
white arrows. Black lines represent the magnetic field lines projected onto this plane. Panels (b-1)-(b-4) display the development
of instabilities. The color shows the pressure in the yz plane indicated by the white line in Panel (a). The black arrows indicate
the height where the instability occurs.
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Figure 19. The spatial distribution of the Fourier power of the density fluctuation for the 3D model with the e↵ect of heat
conduction. The power corresponding to a wave number of k = 2.3 [cell size�1] is shown. The data is taken at t = 352 s.
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Figure 20. The comparison of the size of ALT region between a model without heat conduction and a model with heat
conduction. The color shows the mass density, and the black lines show the magnetic field lines. The time of snapshot is 299.2 s.


